

A Multi-Sensor Perspective on the Interannual Variability of Tropical Humidity and Clouds

Calvin K. Liang

Annmarie Eldering, Andrew Gettelman, Biajun Tian, Sun Wong, Eric Fetzer, Kuo-Nan Liou

Joint Institute for Regional Earth System Science and Engineering at UCLA

Jet Propulsion Laboratory, California Institute of Technology

NOAA CDR Workshop

Motivation

To better characterize the controls on the tropical upper tropospheric/lower stratospheric (UTLS) humidity and clouds.

Datasets:

- (1) Temperature (AIRS) (Accuracy $\leq 1.0 \text{ K}$)
- (2) Combined H₂O (AIRS,MLS) (Liang, et.al, AMTD (2010))

ENSO and QBO Indices

- Ocean Niño Index (ONI) in the Niño3.4 region (5S-5N, 120W-170W) (Source: NOAA CPC, in-situ measurements)
- QBOI represent zonal mean zonal wind anomalies at 50 hPa (Source: NCAR/NCEP reanalysis). Anomalies in thermal wind balance with lower stratospheric temperatures (Randel et.al, JGR, 2000)

Data Sampling

Our analysis will focus on the tropics between 8S-8N

Seasonal and Annual Cycle of H2O

Surface to Stratosphere Interannual Variability of T and H2O

Quasi-biennial Oscillation (QBO) for T with period ~28 months

ENSO

Surface to Stratosphere Interannual Variability of T and H2O

Quasi-biennial Oscillation (QBO) for T with period ~28 months

ENSO

Interannual Variability of tape recorder

- (Randel, et. al., JAS, 1998, Gellar, et. al., JAS, 2002)

ENSO

New vertical picture of H₂O

Zonal Structure of ΔT and Δq

Zonal Structure of ΔT and Δq

ΔT and Δq mainly driven by QBO (Randel, et.al, 1998) but with some zonal asymmetries

ENSO Composites

120 E

180° W

120° W

 Zonal break over TCP when QBO and ENSO in phase

TWP experiences zonal break when ENSO and QBO out of phase

Liang, et.al, JGR (2011), In Press

60° E

- Zonal break over TCP
 when QBO and ENSO in
 phase
- TWP experiences zonal break when ENSO and QBO out of phase
- E02 event primarily an
 ENSO signal; QBO in transition

Liang, et.al, JGR (2011), In Press

- Zonal break in QBO signal is due to ENSO induces changes in convection
- ΔT_E shows quadrupole structure between TCP and TWP.

- Zonal break in QBO signal is due to ENSO induces changes in convection
- ΔT_E shows quadrupole structure between TCP and TWP.

- Zonal break in QBO signal is due to ENSO induces changes in convection
- ΔT_E shows quadrupole structure between TCP and TWP.

Cooler Drier tropopause region

- Zonal break in QBO signal is due to ENSO induces changes in convection
- ΔT_E shows quadrupole structure between TCP and TWP.

27

 Moisture and rain rate (TRMM) anomalies track each other

• Δq_E shows moisture also has quadrupole feature like ΔT_E but with different vertical extent

- Moisture and rain rate (TRMM) anomalies track each other
- Δq_E shows moisture also has quadrupole feature like ΔT_E but with different vertical extent

29

 Moisture and rain rate (TRMM) anomalies track each other

• Δq_E shows moisture also has quadrupole feature like ΔT_E but with different vertical extent

- Moisture and rain rate (TRMM) anomalies track each other
- Δq_E shows moisture also has quadrupole feature like ΔT_E but with different vertical extent

Cloud Fraction (8S-8N)

August 2006-July 2010

All Clouds (CloudSat + CALIPSO)

- Strong ENSO impact on total tropical cloud distribution.
- Vertical anomalies in free troposphere and upper troposphere. TTL shows eastward slanted anomalies

Cumulonimbus (CloudSat)

Deep clouds similar to vertical structure of Δq .

Cirrus (CloudSat)

- Thick cirrus anomalies mimic the deep convective clouds, with evidence of eastward slant near tropopause.
- CF are about the same because these clouds are detrained from deep convection.

Cirrus (CALIPSO)

High thin cirrus have eastward slanting anomalies likely due to ΔT .

Conclusion

- TTLT and H₂O anomalies show a location dependent zonal break depending on the relative phase of the ENSO and QBO. Migration of convection is one mechanism responsible for this.
- Evidence of joint ENSO and QBO impact on zonal water vapor distribution; TCP might play a role.
- ENSO signature is strong on high clouds. Still need to investigate possible QBO signature on high clouds. Need longer time series!
- Thin cirrus (CALIPSO) clouds closely follow T anomalies (Eastward tilt). Deep cloud ENSO signature consistent with H₂O changes.
- Combined A-Train soundings can be used to assess climate models and process representation of humidity.
- Cloud profiles enable us to better characterize possible cloud feedback mechanisms for different cloud types.

Conclusion

- TTLT and H₂O anomalies show a location dependent zonal break depending on the relative phase of the ENSO and QBO. Migration of convection is one mechanism responsible for this.
- Evidence of joint ENSO and QBO impact on zonal water vapor distribution; TCP might play a role.
- ENSO signature is strong on high clouds. Still need to investigate possible QBO signature on high clouds. Need longer time series!
- Thin cirrus (CALIPSO) clouds closely follow T anomalies (Eastward tilt). Deep cloud ENSO signature consistent with H₂O changes.
- Combined A-Train soundings can be used to assess climate models and process representation of humidity.
- Cloud profiles enable us to better characterize possible cloud feedback mechanisms for different cloud types.

Thank You!!!

Constructing a Full Atmospheric H₂O Profile

Averaging Kernels

Verticality

Profile Smoothness

- No unphysical "kinks" in profiles
- Spliced profile is constrained by AIRS and MLS
- New profile does not fall outside of the error estimates of either instrument

